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We develop an approach to asset pricing in incomplete markets
that bridges the gap between the two fundamental approaches in
finance: model-based pricing and pricing by no arbitrage. We
strengthen the absence of arbitrage assumption by precluding in-
vestment opportunities whose attractiveness to a benchmark inves-
tor exceeds a specified threshold. In our framework, the attrac-
tiveness of an investment opportunity is measured by the gain-loss
ratio. We show that a restriction on the maximum gain-loss ratio
is equivalent to a restriction on the ratio of the maximum to mini-
mum values of the pricing kernel. By limiting the maximum gain-
loss ratio, we can restrict the admissible set of pricing kernels,
which in turn allows us to restrict the set of prices that can be
assigned to assets. We illustrate our methodology by computing
price bounds for call options in a Black-Scholes economy without
intermediate trading. When we vary the maximum permitted gain-
loss ratio, these bounds can range from the exact prices implied
by a model-based pricing approach to the loose price bounds im-
plied by the no-arbitrage approach.

I. Introduction

There are two fundamental approaches for pricing assets. Each re-
stricts the set of prices that can be assigned to an asset by restricting
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the set of admissible pricing kernels.1 The first approach, known as
model-based pricing, makes explicit assumptions about a benchmark
investor’s preferences, which in turn yield a specific pricing kernel
embodying the investor’s willingness to pay for consumption across
states. By virtue of its strong assumptions, this approach yields pric-
ing implications that are exact but sensitive to misspecification error.
The second approach, known as no-arbitrage pricing, assumes only
the existence of a set of basis assets (with known prices) and the
absence of arbitrage opportunities to restrict the admissible set of
pricing kernels to those that correctly price the basis assets and as-
sign positive values to payoffs in every state. If the basis assets do
not complete the market, the admissible set contains many pricing
kernels. By virtue of its weak assumptions, this approach yields pric-
ing implications in incomplete markets that are robust but often too
imprecise to be economically interesting.

Much of the literature has heretofore presumed that these model-
ing approaches are mutually incompatible in incomplete markets,
thereby leaving researchers and practitioners to make an uneasy
choice between precision and robustness. Our paper, however, pro-
poses a framework to unify them. Our analysis incorporates both
information about investor preferences via a benchmark pricing ker-
nel and information contained in the prices of basis assets and
strengthens the no-arbitrage condition to also preclude investment
opportunities whose attractiveness to the benchmark investor ex-
ceeds a specified threshold. The combination of these assumptions
yields a restricted set of admissible pricing kernels to restrict asset
prices in an economically meaningful way. Moreover, our analysis
demonstrates that model-based and no-arbitrage pricing techniques
represent extreme cases of a single framework.

In our framework, the attractiveness of an investment opportunity
is measured by the ‘‘gain-loss’’ ratio, which is the expectation of the
investment’s positive excess payoffs divided by the expectation of its
negative excess payoffs. By taking expectations under appropriately
chosen risk-adjusted probabilities, we can incorporate information
about investor preferences for consumption in different states. In
general, investments with a high gain-loss ratio are very desirable
for the benchmark investor, and, in the limit, investments with infi-
nite gain-loss ratios constitute arbitrage opportunities.

Central to our approach is a new duality result linking the exis-
tence of investments with a high gain-loss ratio to pricing kernels

1 In frictionless markets, the value of an asset is determined by multiplying its
payoff in any state by a state-contingent discount factor, or pricing kernel, and sum-
ming over all possible states according to their underlying probabilities.
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exhibiting extreme deviations from the benchmark pricing kernel.
By imposing a finite limit, L , on the maximum gain-loss ratio,
we restrict the admissible set of pricing kernels to those that do
not exhibit such extreme deviations. If L goes to one (its lower
bound), the admissible set shrinks to contain only the benchmark
pricing kernel. If L goes to infinity, the admissible set grows to in-
clude all pricing kernels consistent with the absence of arbitrage
among the basis assets.2 Thus L allows one to parameterize the trade-
off between the precision of the model-based approach and the ro-
bustness of the no-arbitrage approach. Since many pricing problems
arguably call for intermediate levels of precision and robustness, our
framework lends considerable flexibility to existing pricing method-
ologies. To implement our framework, one must choose (i) a value
for the parameter L , (ii) a benchmark pricing kernel, and (iii) an
appropriate set of basis assets. We suggest several ways to guide these
choices in Section VC of the paper.

Our duality result is similar to the result in Hansen and Jaganna-
than (1991) linking the availability of attractive investment opportu-
nities, measured by the Sharpe ratio (mean over standard devia-
tion), to the standard deviation of the pricing kernel. The main
advantage of our result for deriving asset pricing implications is that
a restriction on the maximum gain-loss ratio, unlike a Sharpe ratio
restriction, is equivalent to precluding the existence of arbitrage and
approximate arbitrage opportunities.

We apply our methodology to a canonical problem in finance:
pricing an option that cannot be replicated. We consider a Black-
Scholes (1973) economy with no dynamic trading; thus the Black-
Scholes dynamic hedging solution does not apply. However, Merton
(1973) showed that in this setting the lower and upper no-arbitrage
bounds are max(0, S 2 Ke2r t ) and S, respectively, where S denotes
the initial stock price, K the option strike price, r the continuously
compounded risk-free state, and t the option maturity. Moreover,
Rubinstein (1976) showed that an appropriately chosen benchmark
pricing kernel implies an option price equal to the Black-Scholes
price. We examine the robustness of Rubinstein’s utility-based result
by adopting his benchmark pricing kernel and varying the maxi-
mum gain-loss ratio, L . Our price bounds converge to the Black-
Scholes price as L goes to one and widen to the no-arbitrage bounds

2 The benchmark pricing kernel must be positive, but it need not correctly price
the set of basis assets. For example, our method allows a consumption-based bench-
mark pricing kernel or a risk-neutral benchmark, even if they misprice stocks in-
cluded among the basis assets. This issue is discussed in detail in Secs. IVA and VC .
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as L goes to infinity. From a practical perspective, imposing reason-
able restrictions on the maximum gain-loss ratio dramatically sharp-
ens the call option price bounds from those implied by the no-arbi-
trage approach. We also find that the benchmark pricing kernel
yields pricing implications that are relatively less robust for at-the-
money options than for in-the-money or out-of-the-money options.
This example illustrates that our methodology can be viewed either
as sensitivity analysis around a specific asset pricing model or as
strengthening the no-arbitrage principle.

The paper is organized as follows. Section II presents a simple
numerical example to illustrate our methodology. Section III for-
malizes the gain-loss ratio concept and demonstrates our main dual-
ity result in a finite-state economy with a riskless asset. The result is
extended to the case of an infinite-state economy in the Appendix.
Section IV describes how our duality result can be used to derive
pricing bounds that lie between those implied by a specific asset
pricing model and the no-arbitrage bounds. Section V examines a
detailed application of our method: pricing an option on a stock
with no intermediate trading. We provide guidance on how to
choose the key inputs of our pricing methodology—the maximum
gain-loss ratio L , the benchmark pricing kernel, and the set of basis
assets—and also discuss related methods. Section VI concludes with
potential applications and directions for future research.

II. Illustrative Numerical Example

Consider an incomplete markets economy in which a stock and a
bond trade at some price today and deliver payoffs in three equally
probable states next period. The stock payoff next period is given
by (2, 1, 0) in states 1, 2, and 3 and the bond payoff is given by (1,
1, 1). Without loss of generality, today’s stock and bond prices are
normalized to one, implying a risk-free rate, r F , of zero. Now suppose
that we introduce a call option on the stock with exercise price K 5
1. What can we say about its price, C ?

The model-based pricing approach assumes a benchmark pricing
kernel, m̃* 5 (m*1 , m*2 , m*3 ), which assigns values to consumption in
different states. Given m̃*, the price of the call today is E[m̃* z̃],
where z̃ 5 (1, 0, 0) is the option’s contingent payoff next period.
The values m*j can be interpreted as a benchmark investor’s willing-
ness to pay, per unit of probability, for the state claim paying one in
the j th state and zero elsewhere. In the simplest case, the benchmark
investor is risk-neutral, and m*j 5 1 for all j. Thus one can assign a
price C 5 E[m̃* z̃] 5 1/3 to the option.
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The no-arbitrage pricing approach finds all the call option prices
that do not permit arbitrage opportunities. This is equivalent to all
the call option prices implied by the set of positive pricing kernels
that correctly price the stock and bond. In this example, the admissi-
ble pricing kernels must satisfy m 1, m 2, m 3 . 0 and

1/3 (m 1 3 2) 1 1/3 (m 2 3 1) 1 1/3(m 3 3 0) 5 1 (1)

and
1/3(m 1 3 1) 1 1/3(m 2 3 1) 1 1/3(m 3 3 1) 5 1, (2)

which implies that m 3 5 m 1, m 2 5 3 2 2m 1, and 0 , m 1 , 3/2. Conse-
quently, the no-arbitrage bounds for the call option are 0 , C , 1/2.

Our paper proposes a third approach, which finds the set of op-
tion prices that precludes investment opportunities that exceed a
threshold level of attractiveness for a benchmark investor. The mea-
sure of attractiveness we use is the gain-loss ratio. In the simplest case
of a risk-neutral benchmark investor, the gain-loss ratio of any zero-
price portfolio x̃ is defined as E[x̃ 1]/E[x̃ 2], where x̃ 1 5 max(0, x̃)
and x̃2 5 max(0, 2x̃) represent the positive and negative parts of
the payoff, respectively. The gain-loss ratio summarizes the attrac-
tiveness of any zero-price portfolio. A gain-loss ratio of one implies
that the investment is fairly priced, and a gain-loss ratio above one
implies the existence of an attractive investment opportunity.

The key to our approach is the following duality result, proved in
Section III, relating the existence of high–gain-loss ratio investment
opportunities to large ratios of the maximum to minimum values of
the pricing kernel:

max
{x̃ ∈X , x̃ ≠ 0̃}

E[x̃ 1]
E[x̃ 2]

5 min
{m̃ . 0: E[m̃x̃]50∀ x̃ ∈X }

supj(m j)

inf j(m j)
, (3)

where X denotes the space of zero-price payoffs. The maximand on
the left-hand side is the gain-loss ratio, and its maximum value is
found by searching over all possible zero-cost portfolios that can be
constructed using the stock, the bond, and the option. The mini-
mand on the right-hand side is the ratio of the highest to lowest
values of the pricing kernel across states, and its minimum value is
found by searching over all positive pricing kernels that price the
assets. Thus a gain-loss restriction is equivalent to a restriction on
admissible pricing kernels. For example, suppose that, in a well-
functioning market, investments with gain-loss ratios above some
value L should not exist. With our duality result, this assumption
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reduces the set of admissible pricing kernels to those that are posi-
tive and correctly price the basis assets, and whose ratio of highest
to lowest values is below L , that is,

m 1 . 0 subject to
supj(m 1, 3 2 2m 1)

inf j(m 1, 3 2 2m 1)
# L . (4)

This yields the admissible pricing kernels 3/(L 1 2) , m 1 ,
3L/(2L 1 1), m 2 5 3 2 2m 1, and m 3 5 m 1. For example, if we let
L 5 2, this restricts the admissible pricing kernels to 3/4 , m 1 , 6/5,
implying the call price bounds 1/4 , C , 2/5. These bounds are strictly
narrower than the no-arbitrage bounds, and they contain the
model-based price. The reader can verify that if L is allowed to ap-
proach one (its lower bound), the call price bounds approach the
unique price implied by the risk-neutral benchmark, 1/3; and if L is
allowed to approach infinity, the call price bounds approach the no-
arbitrage bounds, (0, 1/2).

III. Theory

In this section, we derive our central duality result in a finite-state
economy, which includes a riskless bond with known price. These
assumptions are made for expositional clarity and are relaxed in the
Appendix.

A. A Finite-State Framework for Asset Pricing

Consider a two-period model in which assets trade at a certain price
today and deliver a random payoff next period. There are S future
states of the world, with p j . 0 denoting the probability that state j
occurs ( j 5 1, . . . , S ). The economy includes at most S linearly
independent assets generating the space Z ⊂ IRS of portfolio payoffs.
Portfolio payoffs are random variables z̃ 5 (z 1, . . . , z S) ∈ Z , where
z j denotes the payoff in the j th state. Of special interest are the null
payoff 0̃ 5 (0, . . . , 0), the positive orthant IRS

1 5 {z̃ ∈ IRS : z̃ ≠ 0̃ and
z j $ 0 ∀ j }, and the strict positive orthant IRS

11 5 {z̃ ∈ IRS : z j . 0 ∀ j }.
Asset prices are given by a linear functional π defined on Z ; that

is, the portfolio with payoff z̃ ∈Z has price π(z̃). We assume that the
pricing functional π does not allow arbitrage opportunities, that is,
for all z̃ ∈Z > IRS

1, π(z̃) . 0, and that there exists a riskless asset with
risk-free rate of return r F . Finally, given π, we can construct the space
of excess payoffs X 5 {z̃ 2 (1 1 r F)π(z̃): z̃ ∈ Z }.
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B. The Gain-Loss Ratio

We represent information about a benchmark investor with the pric-
ing model (u, c̃ *), where u is a continuously differentiable von Neu-
mann–Morgenstern utility function verifying u ′ . 0, and c̃ * 5
(c *1 , . . . , c *S ) ∈ IRS is equilibrium consumption. This allows us to
construct the benchmark pricing kernel:

m*j 5
u ′(c̃ *j )

E[u ′(c̃ *)]
⋅ 1

1 1 r F

. (5)

The m*j represents the benchmark investor’s willingness to pay, per
unit of probability, for the state claim paying one in the j th state
and zero elsewhere. If the investor is risk-averse, then u ′ is decreas-
ing. Thus a state claim that pays off when c̃ * is low (high) has a
relatively high (low) price. Such a state claim is more valuable for
the benchmark investor because it allows her to smooth consump-
tion across future states of nature.

In a frictionless market, the benchmark pricing kernel m̃* cor-
rectly prices the assets in Z if and only if E[m̃* z̃] 5 π(z̃) for all
z̃ ∈ Z or, alternatively,

∀ x̃ ∈ X subject to x̃ ≠ 0̃, E[m̃* x̃] 5 0 ⇔ E*[x̃] 5 0
(6)

⇔ E*[x̃ 1 2 x̃2] 5 0 ⇔ E*[x̃ 1]
E*[x̃ 2]

5 1,

where E*[⋅] denotes the expectation under the risk-adjusted proba-
bilities p*j 5 p ju ′(c *j )/E[u ′(c̃ *)] for j 5 1, . . . , S, and x̃ 5 x̃ 1 2 x̃2

is the decomposition of a payoff into its positive part x̃1 5 max(x̃,
0) and negative part x̃2 5 max(2x̃, 0).

We call E*[x̃ 1] the gain, E*[x̃ 2] the loss, and E*[x̃ 1]/E*[x̃ 2] the
gain-loss ratio.3 The gain-loss ratio is mathematically defined on IRS

(except for 0̃) and (i) is always nonnegative, (ii) is equal to 1∞ in
the positive orthant IRS

1 and finite elsewhere, (iii) is invariant to the
multiplication of x̃ by a positive scalar, and (iv) is the inverse of the
ratio of the corresponding short position.

The gain-loss ratio summarizes the attractiveness of a zero-cost
investment for the benchmark investor. If the gain-loss ratio is equal
to one, the investment is fairly priced for the benchmark investor.

3 The loss is related to the lower partial moment of order one suggested by Bawa
and Lindenberg (1977) as an alternative measure of risk that could replace the
variance in mean-variance analysis. The main differences are that we define loss by
taking expectations under the benchmark risk-adjusted probability measure and we
do not assume investors to be mean-loss optimizers.
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If the gain-loss ratio is above (below) one, the investment offers a
good buying (selling) opportunity. For example, a gain-loss ratio of
two means that the benchmark investor receives twice as much gain
as would be necessary for her to increase her holdings in the asset.
Equivalently, she risks only half the loss that she would be willing to
accept to increase her holdings in the asset.

C. Dual Formulation in Terms of Pricing Kernels

Our main duality result relates the existence of high–gain-loss ratio
investments to pricing kernels exhibiting extreme deviations from
the benchmark pricing kernel.

Theorem 1.

max
x̃ ∈X
x̃ ≠ 0̃

E*[x̃ 1]
E*[x̃ 2]

5 min
m̃ ∈M

sup
j 51,. . . ,S

(m j/m*j )

inf
j 51,. . . ,S

(m j/m*j )
, (7)

where M 5 {m̃ ∈ IRS
11: E[m̃z̃] 5 π(z̃) ∀ z̃ ∈ Z } denotes the set of

pricing kernels that correctly price all portfolio payoffs. If markets
are complete, that is, Z 5 IRS, the set M has a unique element; other-
wise M has many elements.

We prove this equality by demonstrating that both inequalities #
and $ must be true. Proving the first inequality in equation (7) is
simple. For all x̃ ∈X and m̃ ∈M, we have E[m̃x̃] 5 0, which is equiva-
lent to E*[(m̃/m̃*)x̃] 5 0. Therefore,

E*[x̃ 1] 3 inf
j 51,. . . ,S

m j

m*j
# E*31 m̃

m̃*2x̃ 14
5 E*31 m̃

m̃*2x̃ 24 # E*[x̃ 2] 3 sup
j 51, . . . ,S

m j

m*j
.

(8)

The second inequality in equation (7) is proved in the Appendix
for the general case of infinite states. Furthermore, our result would
also obtain if we replace the riskless bond with a limited liability
asset.

D. Discussion

Theorem 1 is similar to the duality result in Hansen and Jaganna-
than (1991). These authors demonstrated that a bound on the vari-
ance of the pricing kernel is equivalent to a bound on the maximum
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Sharpe ratio (mean to standard deviation of the excess payoff).4 The
loss (gain) replaces the standard deviation (mean) of the excess pay-
off as a measure of risk and reward, and the extreme values replace
the variance as a measure of dispersion of the pricing kernel. If state
prices are equal to the benchmark investor’s willingness to pay, then
all portfolios will be fairly priced and the maximum gain-loss ratio
is one. Attractive investment opportunities exist when state prices
differ from the benchmark investor’s willingness to pay, in which
case the benchmark investor can form attractive portfolios by buying
(selling) cheap (dear) tradable combinations of state claims.

The main advantage of our duality result for deriving asset pricing
implications is that the gain-loss ratio, unlike the Sharpe ratio, char-
acterizes the set of arbitrage and approximate arbitrage opportuni-
ties. This is immediately apparent from theorem 1. Ross (1978)
shows that the absence of arbitrage opportunities is equivalent to
the existence of an admissible pricing kernel that is positive: 0 ,
m̃ , 1∞ or, equivalently, 0 , m̃/m̃* , 1∞. Thus, by theorem 1, a
finite bound on the maximum gain-loss ratio precludes the exis-
tence of arbitrage opportunities. We strengthen the no-arbitrage re-
striction 0 , m̃/m̃* , 1∞ in the following way:

α #
m̃

m̃*
# β, (9)

where 0 , α # β , 1∞. If we assume without loss of generality
that the bounds in equation (9) are binding, the maximum gain-
loss ratio, L , is just the ratio β/α. Bernardo and Ledoit (1999)
show that assuming L is finite is equivalent to ruling out approximate
arbitrage opportunities in the topological sense of being in the
neighborhood of a pure arbitrage opportunity.

IV. Pricing Bounds

In this section, we demonstrate how to use our duality result to de-
rive pricing implications that lie between those of a specific model
and the no-arbitrage principle.

A. Compatibility

In our methodology, the benchmark pricing kernel must be positive
but does not have to correctly price the basis assets. For example,

4 Technically, this result exploits the duality between the payoff space, L2, and the
pricing kernel space, also L2. The infinite-dimensional extension of our result ex-
ploits the duality between the payoff space, L1, and the pricing kernel space, L∞.
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we can use a consumption-based benchmark or a risk-neutral bench-
mark, even if they misprice some or all of the basis assets. To address
this issue formally, let B denote the space of portfolio payoffs that
can be formed from a set of basis assets with known prices. We as-
sume that B includes the payoff on a limited liability asset. The dis-
tinction between the space B and Z is that the prices of payoffs in
B are known and provide valuable information for our pricing proce-
dure. This information can be summarized by the linear pricing
functional πB defined on B. Our methodology combines the infor-
mation contained in the benchmark model with the information in
basis asset prices; thus it is reasonable to ask to what extent they are
compatible with one another. This is easily measured in our frame-
work by the maximum gain-loss ratio among basis assets, denoted
LB. As LB decreases (increases), the benchmark model does a better
(poorer) job at pricing basis assets. In the limit LB 5 1, the bench-
mark model is perfectly well specified in the sense that it prices all
basis assets correctly. The ratio LB can never go below one because
if some asset has a gain-loss ratio below one, its corresponding short
position has a gain-loss ratio above one. In the other limit, as LB

goes to infinity, the benchmark model becomes extremely misspeci-
fied in the sense that approximate arbitrage portfolios can be
constructed from basis assets. Note that LB is similar in spirit to the
measure of model misspecification developed by Hansen and Jagan-
nathan (1997).

B. Economic Assumption

The economic assumption that defines our pricing methodology is
given by the following assumption.

Assumption 1. Excess payoffs have a gain-loss ratio below L :

∀ z̃ ∈ Z subject to π(z̃) 5 0 and z̃ ≠ 0̃,
E*[z̃ 1]
E*[z̃ 2]

# L . (10)

This assumption expresses the idea that if the benchmark model is
reasonable, then high–gain-loss ratio investment opportunities are
inconsistent with well-functioning capital markets: if high–gain-loss
ratio investments existed, they would be (approximately) arbitraged
away. When L decreases, we express more confidence in the ability
of the benchmark to price nonbasis assets; if L increases, we express
reluctance to assume anything stronger than the absence of arbi-
trage. If the benchmark model is misspecified, L must be chosen to
exceed LB (the maximum gain-loss ratio attainable from the set of
basis assets alone).
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C. Pricing Implications

Assumption 1 implies the following bounds on the price of a nonba-
sis asset:

∀ z̃ ∈ Z subject to z̃ ∉ B,

max
b̃ ∈B

E*[(z̃2b̃)1]

E*[(z̃2b̃)2]
$ L̄

πB(b̃) # π(z̃) # min
b̃ ∈B

E*[(b̃2z̃)1]

E*[(b̃2z̃)2]
$ L̄

πB(b̃). (11)

The b̃ in the bounds are the basis assets that come closest to replicat-
ing z̃ from below and from above, respectively. These bounds are
the tightest that can be formed for a single asset. In dual terms they
can be expressed as

∀ z̃ ∈ Z , min
m̃ ∈ IRS

11

sup(m̃/m̃*)

inf(m̃/m̃*)
# L̄

∀b ∈B E[m̃b̃]5πB(b̃)

E[m̃z̃] # π(z̃) # max
m̃ ∈ IRS

11

sup(m̃/m̃*)

inf(m̃/m̃*)
# L̄

∀b ∈B E[m̃b̃]5πB(b̃)

E[m̃z̃]. (12)

The bounds get wider (narrower) as L increases (decreases). In the
limit as L goes to infinity, they converge to the no-arbitrage bounds,
which can be expressed either as

∀ z̃ ∈ Z , max
b̃ ∈B

b̃ #z̃ a.s.

πB(b̃) # π(z̃) # min
b̃ ∈B

b̃ $z̃ a.s.

πB(b̃) (13)

or as

∀ z̃ ∈ Z , min
m̃ ∈ IRS

11

∀b ∈B E[m̃b̃]5πB(b̃)

E[m̃z̃] # π(z̃) # max
m̃ ∈ IRS

11

∀b ∈B E[m̃b̃]5πB(b̃)

E[m̃z̃]. (14)

As L approaches LB, the bounds generically converge to each other.
It is possible to build counterexamples in which the upper and lower
bounds are different for L 5 LB, but these examples are nongeneric.
In general, there exists a unique m̃ ′ . 0 almost surely that correctly
prices basis assets and attains the bound

sup(m̃ ′/m̃*)

inf(m̃ ′/m̃*)
5 LB ,

in which case both bounds converge to the value E[m̃ ′ z̃]. The pric-
ing kernel that attains the bound is very special because it is the
smallest modification to the benchmark pricing kernel that correctly
prices the basis assets.
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V. Option Pricing without Intermediate Trading

In this section, we apply our methodology to derive price bounds
for an option when there is no intermediate trading. Consequently,
the Black-Scholes (1973) dynamic replication arguments do not
apply here. Our economy consists of two basis assets: a riskless bond
with continuously compounded rate of return r 5 log(1 1 r F) and
a stock whose continuously compounded return is normally distrib-
uted with mean µ 2 (σ2/2) and variance σ2. Thus the final stock
price S̃ is lognormally distributed. There are two dates (date 0 and
date t) with no intermediate trading. Our goal is to price a call op-
tion with strike price K and time to expiration t .

Merton (1973) shows that we can obtain the Black-Scholes price
even without continuous trading by specifying a utility function with
constant relative risk aversion (see also Rubinstein 1976; Brennan
1979). Therefore, a natural benchmark is u ′(c̃ *) 5 AS̃ 2γ for some
positive constants A and γ. The value of the multiplier A does not
matter, but there is only one value of the exponent γ that is consis-
tent with the stock and bond parameters µ, σ, and r. It turns out
that we do not even need to compute γ. As we showed in Section
III, we need to know only the risk-neutral probability, defined as the
product of u ′(c̃ *)/E[u ′(c̃ *)] with the true probability. It is a stan-
dard result that, under this risk-neutral probability, the continuously
compounded stock return is normally distributed with mean r 2
(σ2/2) and variance σ2. The only change is that µ is replaced by r.
This property characterizes the risk-adjusted probability measure.

Let S denote the initial stock price, C the initial call option price,
and C̃ 5 (S̃ 2 K )1 the call option payoff. We shall be interested in
the portfolio with wS shares of stock and wC call options, which has
excess payoff x̃ 5 w S(S̃ 2 e rt S ) 1 w C[(S̃ 2 K )1 2 e rt C ].

A. Details on Numerical Computations

Recall that the gain is the expectation of a portfolio’s excess payoff,
computed over states in which the excess payoff is positive. Formally,
the gain is E*[x̃ 1{x̃ .0}], where 1 denotes the indicator function. The
excess payoff x̃ is positive when the stock price S̃ belongs to a certain
range. Consider an arbitrary interval for the stock price. If this inter-
val does not contain the strike price K, x̃ is a linear function of S̃
over the whole interval. If it does contain K, this interval can be split
into two subintervals at K so that x̃ is linear in S̃ over each subinterval.
In summary, the range of values of S̃ in which the excess payoff x̃ is
positive can be decomposed into three or fewer intervals so that x̃
is linear in S̃ over each one of them. Therefore, the gain can be
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decomposed into the sum of three or fewer terms so that each term
is the expectation of a linear function of S̃ over an interval. Each
term can be computed in closed form by the following formula:

E*[(α 1 βS̃ )1 {S1 #S̃ ,S2}] 5 α[Φ(d 1 2 σ √t) 2 Φ(d 2 2 σ √t)]

1 βSe rt[Φ(d 1) 2 Φ(d 2)],
(15)

where

d i 5
log(S/S i e2r t )

σ √t
1 1/2 σ √t , i 5 1, 2. (16)

In equations (15) and (16), α and β represent the coefficients of the
linear function; S 1 and S 2 are the bounds of the interval, possibly
zero or infinity; and Φ(⋅) denotes the standard normal cumulative
distribution function. It is worth noting that the familiar Black-
Scholes price can be obtained directly from equations (15) and (16)
by using the risk-neutral valuation formula E*[(2K 1 S̃ )1 {K #S̃ ,∞}]/e rt.

This shows how to compute the gain (and by symmetry the loss) in
closed form for any portfolio weights w S and wC, given initial prices S
and C . The next step is to find the weights of the portfolio with
the maximum gain-loss ratio, given S and C . Assume without loss of
generality that E*[C̃ 2 e rtC ] . 0, and let wS 5 wE*[C̃ 2 e r tC ] and
wC 5 1 2 wE*[S̃ 2 e rt S ], where w is a free parameter. As w varies,
the expected excess payoff of the portfolio E*[x̃] remains constant.
We then find the value of w that minimizes the first absolute moment
(L 1 norm) of the excess payoff E*[| x̃ |]:

min
w

E*[| x̃ |]

subject to x̃ 5 wS(S̃ 2 e rt S ) 1 wC(C̃ 2 e rt C ),

C̃ 5 (S̃ 2 K )1, (17)

wS 5 wE*[C̃ 2 e r tC ],

w C 5 1 2 wE*[S̃ 2 e rt S ].

This is a simple univariate unconstrained convex optimization pro-
gram. Fast and reliable algorithms abound. It is easy to verify that,
at the optimum, the solution x̃ has the maximum gain-loss ratio in
the economy. Call it L(S, C ).

The final step is to impose a ceiling L . 1 on the maximum gain-
loss ratio in the economy. This ceiling implies upper and lower
bounds on the call option price: C(S, L) 5 max{C : L(S, C ) # L}
and C(S, L) 5 min{C : L(S, C ) # L}. These bounds are obtained by
inverting the function L(⋅, ⋅) in its second argument. A useful trick
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is to work with the Black-Scholes implied volatility rather than the
call price itself : although the two approaches are mathematically
equivalent, the former approach is numerically better behaved.

An alternative method based on Monte Carlo simulations is as fol-
lows. We generate I 5 10,000 draws from the lognormal distribution
of the terminal stock price under the Black-Scholes risk-adjusted
probability measure. Let y i denote standard normal variates inde-
pendently and identically distributed across i 5 1, . . . , I. The final
value of the stock in the i th simulation is S i 5 S exp[r t 2 (σ2/2)t 1
σ √t y i]. The corresponding payoff on the call option is C i 5 (S i 2
K )1. Using these simulated payoffs, we can approximate the Black-
Scholes price of the call option by

C 5
1
I ^

I

i51

(S i 2 K )1 e2r t.

The bounds implied by assumption 1 on the price of this option are
derived from equation (11):

max
w0,w1 ∈ IR

b i5w01w1Si

(1/I )∑I
i51(bi2Ci)

1

(1/I )∑I
i51(b i2Ci)

2
$ L̄

w 0 e2r t 1 w 1 S # C # min
w0,w1 ∈ IR

b i5w01w1Si

(1/I )∑I
i51(Ci2b i)

1

(1/I )∑I
i51(Ci2b i)

2
$ L̄

w 0 e2r t 1 w 1 S,

(18)

where b i is the payoff in the i th simulation of the replicating portfo-
lio of basis assets with weight w 0 on the risk-free bond and weight
w 1 on the option on the traded asset. We computed these bounds
using the optimization toolbox of the programming language MAT-
LAB. The only numerical trick was to rewrite the constraint on the
left-hand-side maximization program as

1
I ^

I

i51

(b i 2 C i)1 $
1
I ^

I

i51

(b i 2 C i)2 3 L

and do the same thing for the right-hand-side minimization pro-
gram.

B. Resulting Bounds

The call price must lie between C and C, the right-hand and left-
hand sides of equation (18), respectively, or else approximate arbi-
trage opportunities would exist. The location of the bounds is deter-
mined by the benchmark model, the tightness of the bounds is
decreasing in the threshold L, and the bounds lie strictly between
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Fig. 1.—Bounds on call option price. The option has t 5 1 year to expiration
and strike price K 5 100. The one-year risk-free rate of return is 5 percent and the
standard deviation of the continuously compounded rate of return on the stock is
σ 5 0.1409 per year. These values are calibrated to mimic a broad-based stock mar-
ket index. The benchmark model is chosen to yield the Black-Scholes price given
by the thick line. The thin lines represent the upper and lower bounds obtained
by ruling out approximate arbitrage. The dotted line represents the lower bound
obtained by ruling out pure arbitrage (the corresponding upper bound is too high
to be included in the picture).

the Black-Scholes price and the no-arbitrage bounds. As L ' 1, C
and C converge to the Black-Scholes price; as L ; 1∞, they con-
verge to the no-arbitrage bounds.

The call option to be priced has time to maturity t of one year
and strike price K 5 100. We use parameter values calibrated to
mimic a broad-based U.S. market index and bond data. The one-
year risk-free interest rate is 5 percent, and the standard deviation
of the stock is σ 5 0.1409 per year. Figure 1 plots the gain-loss
bounds on call option prices for the thresholds L 5 1, 2, . . . , 10.
For L 5 1, the upper and lower bounds are equal to each other and
to the Black-Scholes price. The bounds get wider as L increases. By
imposing reasonable restrictions on the maximum gain-loss ratio,
we can dramatically sharpen the no-arbitrage bounds.
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Fig. 2.—Approximate arbitrage bounds on the implied volatility. These bounds
correspond to the option prices plotted in fig. 1. Implied volatilities were plotted
using the Black-Scholes formula. The thick line represents the true volatility of the
underlying asset, a constant 0.1409. The thin lines represent the volatilities implied
by the upper and lower bounds obtained by ruling out approximate arbitrage.

Figure 2 plots the same data, except that call option prices have
been mapped into implied volatilities by inverting the Black-Scholes
formula.

In figures 1 and 2, it appears that the bounds are looser near the
money. This can be explained by the well-known fact that near-the-
money options are the least redundant ones. Intuitively, near-the-
money options put a heavy probability weight on the nonlinearity
(at K ) that stocks and bonds, being linear, cannot reproduce. This
is also the standard explanation for why near-the-money options
have the highest traded volume.

Also, the upper bound C is farther away from the Black-Scholes
price than the lower bound C. Intuitively, the reason is that the up-
per no-arbitrage bound S̃ is farther away than the lower no-arbitrage
bound max(S̃ 2 e2r t K, 0). Indeed, it is so far away that it does not
even fit into figure 1. Since our bounds are, in some sense, interpola-
tions between the no-arbitrage bounds and the Black-Scholes price,
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it comes as no surprise that C is farther away. There is a practical
implication. If a trader does not know the true volatility—perhaps
because it changes randomly or because of estimation error—then
it may be better to overstate it systematically. The reason is that the
penalty, in terms of creating approximate arbitrage opportunities
that other traders can exploit, is not symmetric.

Another salient feature is that going from L 5 1 to L 5 2 moves
the bounds much more than going from L 5 9 to L 5 10. To see
why, remember that the Black-Scholes price minimizes L(S, C ). At
the minimum, the first-order condition ∂L/∂C 5 0 implies that
∂C(S, 1)/∂L 5 1∞ and ∂C(S, 1)/∂L 5 2∞. In words, the bounds
are infinitely sensitive to an increase of L when L 5 1. This mathe-
matical fact has an important economic interpretation: small errors
in selecting the benchmark model can cause relatively large pricing
deviations, even in the absence of approximate arbitrage opportuni-
ties.

The figures also show that bound sensitivity decreases sharply in
L . Mathematically, we have

lim
L̄;1∞

∂C
∂L

(S, L) 5 lim
L̄;1∞

∂C
∂L

(S, L) 5 0.

Once we choose a ceiling L high enough to be on the safe side,
economically large increases in L have little further effect on the
bounds. This is important because the choice of the threshold L is
somewhat arbitrary and open to discussion.

To sum up, a bound on the gain-loss ratio generates pricing impli-
cations that are substantially different from model-based pricing and
from no-arbitrage pricing. Furthermore, these implications can be
relatively robust to differences of opinion over the level of the maxi-
mum gain-loss ratio.

C. Modeler’s Choices

Our methodology involves several choices that the modeler must
make ex ante in order to obtain pricing implications.

Ceiling on the Maximum Gain-Loss Ratio

The parameter L controls the trade-off between the precision of a
specific benchmark pricing model and the robustness of no-arbi-
trage bounds. Choosing the value of L is difficult, but it is done im-
plicitly by any modeler who assumes a specific model (implicitly
choosing L 5 1) or insists on nothing stronger than a no-arbitrage
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assumption (implicitly choosing L arbitrarily large). In our opinion,
neither one of these commonly made choices is optimal for deriving
useful pricing implications in practice. Exact pricing models are so
sensitive to misspecification that small values of L are preferable to
L 5 1. The no-arbitrage principle is so weak that it is always better
to use a large but finite value of L . Thus the problem of choosing
L is less daunting when compared against the alternatives.

One possibility is to let L represent the maximum gain-loss ratio
implied by a well-known mispricing puzzle, such as the historically
high equity risk premium, and use it as a general indicator of worst-
case error in economic models. For example, we compared the re-
turn on the value-weighted U.S. stock market index from the Center
for Research in Security Prices to the risk-free rate on U.S. Treasury
bills reported by the same source. When we use a benchmark model
assuming logarithmic utility, the gain-loss ratio of the stock market
index is L 5 2.6.5 This is representative of the magnitude of viola-
tion of the benchmark model in a classic asset pricing puzzle.

Alternatively, one could survey arbitrageurs to find out how large
the prospect of gain must be relative to potential losses to persuade
them to take the position.

Bawa and Lindenberg (1977) showed that in the special case of
normally distributed returns, there exists a one-to-one mapping be-
tween the Sharpe ratio and the gain-loss ratio, under a risk-neutral
benchmark. If the normally distributed excess payoff x̃ has Sharpe
ratio S, then

E[x̃ 1]
E[x̃ 2]

5
φ(S ) 1 SΦ(S )

φ(2S ) 2 SΦ(2S )
, (19)

where φ(⋅) and Φ(⋅) denote the standard normal probability density
function and cumulative distribution function, respectively. This re-
sult is most useful when the asset being priced has returns that are
close to normally distributed. This mapping has the advantage of
building on our familiarity with the Sharpe ratio; for example, a
Sharpe ratio of 0.3 maps into an L of approximately 2. The mapping
between the gain-loss ratio and the Sharpe ratio under normality is
shown in figure 3. Note that the mapping between the gain-loss ratio
has the same shape as the exponential function.

Finally, every model makes unrealistic assumptions, so it is impor-
tant to understand which of a given model’s pricing implications are
sensitive to misspecification error and which are robust. A model’s

5 To proxy for consumption, we used growth in personal consumption expendi-
tures of nondurable goods reported by the Federal Reserve, using monthly data
compounded annually from 1959 to 1997.
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Fig. 3.—Mapping between the gain-loss ratio, using a risk-neutral benchmark,
and the Sharpe ratio under normality.

pricing implications are robust when a violation of its assumptions
creates an arbitrage or near-arbitrage opportunity. We can address
the issue of robustness quantitatively by computing price bounds for
different values of L : price bounds that are narrow for large values
of L suggest that the benchmark model’s predictions are robust.

Basis Assets

If there are assets with known prices and payoffs that nearly mimic
the assets to be priced, including them among the basis assets will
yield tighter pricing bounds. For example, suppose that there are
two securities with identical payoffs except that they differ slightly
in one state, which occurs with small probability. If the prices of
these two securities are very different, then they create a near-arbi-
trage opportunity, and the price of one security will be very valuable
information for determining reasonable prices for the other.

Also, the modeler should include only basis assets available to the
investor in question. For example, suppose that we are interested
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in obtaining bounds on the value of a stock option to a corporate
executive. If the executive can sell short a market index to hedge
the firm’s market risk, an index option may be an appropriate asset
to include in the analysis. However, if the executive is not permitted
to buy and sell the firm’s stock freely or is not permitted to short
the firm’s stock (e.g., because of insider trading restrictions), then
it is inappropriate to include the firm’s stock as a basis asset since
the executive cannot freely form portfolios of the stock and option.
By contrast, if we wanted to determine the value of such options to
the firm, we would include the firm’s stock as a basis asset.

Benchmark Pricing Kernel

To obtain a benchmark pricing kernel, one can specify a utility func-
tion u and a consumption plan c̃ * and use equation (5). But pricing
kernels implied by representative agent models with time-additive
utility do a poor job of explaining observed stock prices when aggre-
gate consumption data are used (e.g., the equity premium puzzle of
Mehra and Prescott [1985]). Alternatively, the modeler can choose a
stock market index to proxy for aggregate consumption in order to
fit observed data better. Recall, however, that there is no require-
ment that the benchmark pricing kernel correctly price all basis
assets. For example, one could use a risk-neutral benchmark even
though it does not price all basis assets. A gain-loss ratio restriction
using this benchmark will yield robust pricing implications if inves-
tors’ willingness to pay for consumption in different states does not
vary considerably.

It is sometimes desirable to choose a benchmark model that prices
basis assets correctly as in Rubinstein (1976). This is generally feasi-
ble when the benchmark is chosen from a family of models with
enough free parameters to match the number of basis assets. The
benchmark pricing kernel need not be inspired by theory; rather,
it can be obtained from some parametric (e.g., Backus, Foresi, and
Telmer 1996) or nonparametric (e.g., Bansal and Viswanathan 1993;
Aı̈t-Sahalia and Lo 1998) estimation technique. But the benchmark
pricing kernel must be strictly positive to eliminate the possibility of
arbitrage opportunities.

The choice of benchmark pricing kernel should account for the
characteristics of the investor in question. Consider our earlier ex-
ample of obtaining bounds on the value of an executive’s portfolio
of stock options. The executive may not hold a diversified portfolio
because of insider trading restrictions, in particular short-sale con-
straints, and may have considerable human capital tied up in the
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firm. Thus it would be inappropriate to use a benchmark pricing
kernel that does not price idiosyncratic risk.

D. Varying the Benchmark

As mentioned earlier, our method does not require the benchmark
model to price basis assets correctly. We now illustrate this by using
a benchmark model that misprices most risky assets: the risk-neutral
benchmark. In this case the benchmark risk-adjusted probability
measure is equal to the true probability measure. Even when inves-
tors are risk-averse, this may still be a useful benchmark if we have
little knowledge of what states of nature are ‘‘good’’ (low marginal
utility) versus ‘‘bad’’ (high marginal utility).

Let us continue with the option pricing example. The first step is
to specify the stock’s drift. We arbitrarily set it equal to µ 5 0.1123,
calibrated to mimic a U.S. stock market index. We then redo the
computations in Section VA with this drift instead. The maximum
gain-loss ratio among basis assets is attained by a long position in
the stock and is equal to LB 5 3.7927. Setting L 5 LB gives a unique
price for the call option. This price can be computed by taking the
inner product of the call option payoff with the pricing kernel that
takes the value m when the excess return on the stock is negative
and m when the excess return is positive. The values m and m are
derived from the condition that the bond and the stock be correctly
priced, by solving a system of two equations and two unknowns. The
resulting price can be compared to the Black-Scholes price.

The next step is to choose a ceiling on the maximum gain-loss
ratio. We choose L 5 LB 1 2 and compare the resulting bounds
against those obtained in subsection B for L 5 1 1 2 5 3 (in subsec-
tion B we had implicitly LB 5 1). This is plotted in figure 4. Notice
that varying the benchmark shifts the location of the bounds up or
down but does not affect their width.

If we vary the benchmark over all arbitrage-free pricing models,
then the bounds will sweep over all arbitrage-free prices between
max(0, S 2 Ke2rT ) and S, which is not particularly helpful. To narrow
the bounds, one must choose a particular benchmark.

E. Comparison with Other Methods

Ledoit (1995) defines a ‘‘δ-arbitrage opportunity’’ as a portfolio with
a Sharpe ratio higher than a prespecified threshold δ and derives
the implications of precluding δ-arbitrage opportunities for stock
returns in the context of the arbitrage pricing theory (Ross 1976).
The problem with this approach is that a Sharpe ratio constraint
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Fig. 4.—Gain-loss bounds for different benchmarks. The dashed lines come from
the risk-neutral benchmark, and the solid lines come from the power utility bench-
mark that correctly prices the stock and the bond. The inner lines correspond to
L 5 LB, where LB denotes the maximum gain-loss ratio attainable by constructing
portfolios of the stock and bond. For the risk-neutral benchmark, LB 5 3.7927, and
for the power utility benchmark, LB 5 1 by construction. If L 5 LB, the upper and
lower bounds coincide. The outer lines correspond to L 5 LB 1 2.

does not form a neighborhood of the set of arbitrage opportunities: in
fact, it does not even rule out arbitrage opportunities since arbitrage
opportunities can have a Sharpe ratio below any positive threshold
δ. Intuitively, this occurs because upside risk increases the denomina-
tor of the Sharpe ratio. The problem is most pronounced when pay-
offs are heavily skewed, as with out-of-the-money options and lottery
tickets.

A striking example is a lottery ticket costing one cent today with
a payoff of $50 billion next year with probability 10 percent, and
nothing otherwise:

0.01 5
50,000,000,000 with probability .1

;
'

0 with probability .9.
(20)
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This lottery has a very low Sharpe ratio, 0.33 (below a U.S. stock
market index), yet it is obviously a very attractive investment oppor-
tunity for any reasonable individual. This apparent paradox is re-
lated to the fact that mean-variance preferences, from which the
Sharpe ratio is derived, require a quadratic utility function (except
for particular distributions of payoffs such as the Gaussian), which
displays satiation. In fact, Dybvig and Ingersoll (1982) proved that
the capital asset pricing model (CAPM) admits arbitrage opportuni-
ties if markets are complete.

Cochrane and Saá-Requejo (2000, this issue) derive pricing
bounds on derivatives by ruling out the existence of ‘‘good deals’’
(investment opportunities with high Sharpe ratios) and arbitrage
opportunities. As in Hansen and Jagannathan (1991), the Sharpe
ratio bound is equivalent to a bound on the variance of the pricing
kernel; and the no-arbitrage assumption implies that the pricing ker-
nel is nonnegative. Nonetheless, because the pricing kernel can take
arbitrarily low positive values, this does not rule out some opportuni-
ties close to arbitrage.

The practical relevance of this theoretical point is seen by compar-
ing figure 1 with the corresponding figure in the paper by Cochrane
and Saá-Requejo. In the out-of-the-money region of figure 1 (low
initial stock price), the gain-loss approach yields a strictly positive
lower bound on the option price, whereas the ‘‘good-deal’’ bound
yields a lower bound below zero. When the good-deal bound is aug-
mented with the no-arbitrage restriction, it yields a lower bound of
exactly zero. The gain-loss framework recognizes that out-of-the-
money options can be attractive if they are sufficiently cheap; how-
ever, they will always have too much upside risk to be perceived as
attractive at any positive price by the variance bound.

The method of Cochrane and Saá-Requejo works extremely well
over short trading horizons, because at these horizons payoffs are
almost normally distributed and are not shaped like out-of-the-
money options. In addition, the authors show that their approach
is remarkably tractable in dynamic problems. It is straightforward to
add our gain-loss ratio restriction, under a risk-neutral benchmark,
to their dynamic framework.

Hansen and Jagannathan (1997) define two general quadratic
measures of distance: δ from a given benchmark pricing kernel to
the nearest admissible pricing kernel and δ1 to the nearest positive
admissible pricing kernel. Both distances represent nonparametric
measures of the degree of misspecification of the benchmark model.
In practice, with nonskewed returns like the stocks and bonds that
Hansen and Jagannathan use, the positivity constraint makes little
difference, and δ1 gives results qualitatively similar to δ. However,
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with data involving heavily skewed returns, there could be a substan-
tial difference: in such cases it might be worth looking at an alterna-
tive approach based on the gain-loss ratio for the reasons outlined
above. This could be interesting, for example, when exploring the
volatility smile.

Several other duality results in the literature could, in principle,
be used to derive asset price bounds. It is important to note, how-
ever, that these results were not presented with this application in
mind. Snow (1991) generalizes the Hansen-Jagannathan (1991)
bounds by deriving restrictions on the q th moment of the pricing
kernel E[m̃ q]1/q, for 1 , q , ∞. Another restriction is due to Stutzer
(1995), who shows that restricting the maximum expected utility at-
tainable by a constant absolute risk aversion investor is equivalent
to restricting the entropy of the pricing kernel E[m̃ log(m̃)]. Finally,
Bansal and Lehmann (1997) show that restricting the maximum ex-
pected utility that can be attained by an investor with logarithmic
utility is equivalent to restricting E[2log(m̃)]. Bernardo and Ledoit
(1999) show that imposing these restrictions does not prevent state
prices from being either arbitrarily close to zero or arbitrarily high;
thus the implied pricing bounds would permit approximate arbi-
trage opportunities.

Constantinides (1994) uses second-order stochastic dominance
arguments to derive option price bounds. The key assumption he
makes is that the marginal utility of consumption is decreasing in
the price of the underlying security. Thus, if a zero-cost portfolio,
which may include options positions, has positive (negative) payoffs
when the price of the underlying security is low (high), then it
hedges consumption risk, and it must be true that, in equilibrium,
the expectation of the portfolio payoffs is nonpositive. This condi-
tion holds for any increasing and concave utility function; thus the
pricing bounds are robust to misspecification error. When prior
knowledge about the specific form of the utility function is used, the
price bounds could be tightened.

VI. Conclusion

This paper derives a new duality result relating the extreme values
of the pricing kernel to the existence of approximate arbitrage op-
portunities, measured by the ‘‘gain-loss ratio.’’ By precluding the
existence of approximate arbitrage opportunities, we impose restric-
tions on the set of admissible pricing kernels that can be used to
price assets. Our notion of approximate arbitrage, high gain-loss ra-
tios, depends on a set of benchmark preferences. While the absence
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of arbitrage requires only weak assumptions about investor prefer-
ences (i.e., monotonicity), the notion of approximate arbitrage re-
quires stronger assumptions because any nonarbitrage portfolio can
be supported in equilibrium by some set of investor preferences.

We demonstrate the implications of a gain-loss ratio restriction
by computing bounds on the price of options on a stock when there
is no intermediate trading. By construction, our bounds lie strictly
between the Black-Scholes price (obtained here as an equilibrium
price since dynamic replication is impossible) and the no-arbitrage
bounds. Thus our method offers a general way to chart the middle
ground between a specific asset pricing model and no arbitrage. The
optimal trade-off between the precision of a specific model and the
robustness of the no-arbitrage principle often lies strictly between
the two extremes.

Most of the interesting analysis that has been done in the mean-
variance framework can be replicated in the gain-loss framework.
For example, the standard quadratic portfolio selection problem of
minimizing variance subject to attaining a certain level of expected
return can be restated as a linear program to minimize loss subject
to meeting a specified level of gain. Furthermore, a CAPM-like equi-
librium pricing model can be derived (Bawa and Lindenberg 1977).
Gain-loss is similar to mean-variance for close to normally distrib-
uted payoffs, but more consistent with no arbitrage for heavily
skewed payoffs such as out-of-the-money options.

There are many other practical asset pricing problems that can
be addressed with the gain-loss ratio restriction. For example, real
options are difficult to value using arbitrage methods since the sto-
chastic component of the options return often cannot be replicated
because the underlying asset does not exist, does not trade, trades in
an illiquid market, or is not spanned by a portfolio of traded assets.
If one can construct an imperfect hedging strategy by using some
combination of existing assets, then our gain-loss restriction yields
bounds consistent with the inability to construct extremely attractive
portfolios using these basis assets. The dynamic replication argu-
ment implicit in the Black-Scholes approach also fails when valuing
executive stock options because executives cannot freely trade in the
underlying stock or options. To get useful price bounds the modeler
could (i) account for the fact that the pricing kernel, which is rele-
vant to the executive, prices idiosyncratic risks that he cannot diver-
sify away; and (ii) include in the analysis the ability of the executive
to trade some assets that are imperfect hedges for some firm risks,
for example, index options. Finally, the gain-loss approach provides
an economically meaningful way to evaluate mutual fund perfor-
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mance: according to the attractiveness of the portfolio for some
benchmark investor.6

Appendix

Proof of Theorem 1

We shall prove theorem 1 in the infinite-state case. We shall need to intro-
duce some notation. Let L1* 5 {z̃ : i z̃ i , ∞} denote the space of all possible
payoffs, where i z̃ i 5 E*[| z̃ |]. The positive orthant of L1* is given by L1*1 5
{z̃ ∈L1*: z̃ $ 0 a.s. and z̃ ≠ 0̃}. Let L∞* 5 {m̃ : sup(m̃/m̃*) , ∞} denote the
dual of L1* and L∞*11 5 {m̃ ∈L∞*: m̃ . 0 a.s.} denote the strict positive orthant
of L∞* containing pricing kernels that do not permit arbitrage opportuni-
ties.

First, we show that we can assume, without loss of generality, that the
benchmark investor is risk-neutral.

Lemma 1. If equation (7) holds in the special case in which m̃* is a con-
stant, then it holds for any strictly positive m̃*.

Proof of lemma 1. When m̃* is a constant, equation (7) can be rewritten
as

max
x̃ ∈X
x̃ ≠ 0̃

E[x̃ 1]
E[x̃ 2]

5 min
m̃ ∈M

sup m̃

inf m̃
. (A1)

Now let m̃* denote any strictly positive benchmark pricing kernel. If we use
equation (A1) under the ∗ probability, we obtain

max
x̃ ∈X
x̃ ≠ 0̃

E*[x̃1]
E*[x̃ 2]

5 min
m̃† ∈M†

sup m̃ †

inf m̃ †
, (A2)

where M † 5 {m̃ † ∈L∞*11: ∀ z̃ ∈Z E*[m̃ † z̃] 5 π(z̃)}. The difference between
M † and M is that the elements of M † represent π(⋅) through expectation
under the ∗ probability. Note that m̃ ∈M if and only if m̃ † 5 E[m̃*]m̃/m̃*
∈ M †. Therefore,

min
m̃† ∈M†

sup m̃ †

inf m̃ †
5 min

m̃ ∈M

sup(E[m̃*]m̃/m̃*)

inf(E[m̃*]m̃/m̃*)
5 min

m̃ ∈M

sup(m̃/m̃*)

inf(m̃/m̃*)
. (A3)

Bringing equations (A2) and (A3) together proves lemma 1. Q.E.D.
To begin, we shall treat separately the case in which there are arbitrage

opportunities.

6 In this sense, the gain-loss approach is related to the positive period weighting
measure in Grinblatt and Titman (1990) when their weights are interpreted as mar-
ginal utilities.
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Lemma 2. The following three statements are equivalent: (i) The pricing
functional π(⋅) admits arbitrage opportunities, (ii)

max
x̃ ∈X
x̃ ≠ 0̃

E*[x̃ 1]
E*[x̃ 2]

5 1∞,

and (iii)

inf
m̃ ∈M

sup(m̃)

inf(m̃)
5 1∞.

Proof of lemma 2. Part i implies part ii by definition. Part ii implies part
iii by inequality (8). If part iii holds, then there does not exist a strictly
positive pricing kernel, which implies the existence of an arbitrage opportu-
nity; therefore, part i holds. Q.E.D.

Until the end of the Appendix, we shall assume that there are no arbi-
trage opportunities. To complete our proof we must show the inequality

max
x̃ ∈X
x̃ ≠ 0̃

E[x̃ 1]
E[x̃ 2]

$ min
m̃ ∈M

sup(m̃)

inf(m̃)
. (A4)

Define

h 5 max
x̃ ∈X
x̃ ≠ 0̃

E[x̃ 1]
E[x̃ 2]

;

h is finite because we have ruled out the case h 5 1∞ treated in lemma 2.
Furthermore, h $ 1 since any portfolio with a gain-loss ratio below one has
a short position with a gain-loss ratio above one.

Consider the set K 5 {ỹ ∈L1 : ỹ ≠ 0̃, E[ỹ 1]/E[ỹ 2] . h } of random variables
with a gain-loss ratio above h . We can rewrite it as K 5 {ỹ ∈L1 : θ(ỹ) , 0},
where the function

θ: L1 → IR, (A5)

ỹ ° (h 2 1)E[ỹ 2] 2 E[ỹ] (A6)

is convex and continuous. This implies that the set K is convex and open.
In particular, the interior of K is K itself, which is nonempty. Note also that
X is convex and does not intersect with K by the definition of h . Therefore,
by Eidelheit’s version of the separating hyperplane theorem (Luenberger
1969, p. 133), there exists a continuous linear functional ψ: L1 → IR such
that, for all x̃ ∈X , for all ỹ ∈K, ψ(x̃) , ψ(ỹ). By the Riesz representation
theorem, there exists a random variable m̃ ∈ L∞ that represents ψ, that is,
for all ỹ ∈ L1, ψ(ỹ) 5 E[m̃ ỹ]. Thus m̃ verifies

∀ x̃ ∈ X ∀ ỹ ∈ K, E[m̃x̃] , E[m̃ ỹ]. (A7)

First, substituting x̃ 5 0̃ into equation (A7) yields, for all ỹ ∈ K, E[m̃ ỹ] .
0. Since L1

1 ⊂ K, we have, for all ỹ ∈L1
1, E[m̃ ỹ] . 0. It implies that m̃ . 0

almost surely. Second, suppose that there existed x̃ ∈X with E[m̃ x̃] ≠ 0. By
taking an α . 0 sufficiently large, we would be able to construct x̃ ′ 5
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αE[m̃x̃]x̃ ∈ X that would verify E[m̃ x̃ ′] . E[m̃ ỹ], in violation of equation
(A7). Therefore, for all x̃ ∈X , E[m̃ x̃] 5 0. Third, if m̃ was replaced by m̃ 3
E[m̃]/(1 1 r F ), equation (A7) would still hold. Therefore, we can assume
without loss of generality that m̃ correctly prices the risk-free asset. When
these three results are brought together, m̃ is an admissible positive pricing
kernel: m̃ ∈ M .

Let m 5 sup(m̃) and m 5 inf(m̃). Then for all e . 0, we have Pr{m̃ $
m 2 e} . 0 and Pr{m̃ # m 1 e} . 0. Fix e . 0 and define the random
variable

ỹ e 5
(h 1 e) 3 1 {m 1e$m̃ }

Pr{m 1 e $ m̃ }
2

1{m̃$m̄ 2e}

Pr{m̃ $ m 2 e}
,

where 1 denotes the indicator function of an event. This random variable
has gain E[ỹ 1

e ] 5 h 1 e, loss E[ỹ 2
e ] 5 1, and gain-loss ratio E[ỹ 1

e ] 4
E[ỹ2

e ] 5 h 1 e; therefore, ỹ e ∈ K . Then equation (A7) yields

E[m̃ ỹ e] $ 0,

E3m̃3(h 1 e) 3 1 {m 1e$m̃ }

Pr{m 1 e $ m̃ }
2

1{m̃$m̄ 2e}

Pr{m̃ $ m 2 e}44$ 0,

(h 1 e) 3 E[m̃ |m 1 e $ m̃] 2 E[m̃ |m̃ $ m 2 e] $ 0,

(h 1 e) 3 (m 1 e) $ (h 1 e) 3 E[m̃ |m 1 e $ m̃] $ E[m̃ |m̃ $ m 2 e] $ m 2 e,

(h 1 e) 3 (m 1 e) $ m 2 e,

h $
m 2 e

m 1 e
2 e.

Since this is true for any e . 0, we have

h $ lim
e'0 1m 2 e

m 1 e
2 e2 5

m
m

;

hence,

max
x̃ ∈X
x̃ ≠ 0̃

E[x̃ 1]
E[x̃ 2]

5 min
m̃ ∈M

sup m̃

inf m̃
. (A8)
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